# The Impact of Multinationals Along the Job Ladder

Ragnhild Balsvik\*, Doireann Fitzgerald† and Stefanie Haller‡

\*Institute of Marine Research, †Minneapolis Fed1, ‡University College Dublin,

October 2023

 $<sup>^{1}</sup>$ The views expressed here are those of the authors and not necessarily those of the Federal Reserve Bank of Minneapolis or the Federal Reserve System.

- Multinational affiliates are more productive than domestic firms
- Governments often provide incentives to attract them
- ▶ How do they impact a host country through the labor market?

Our view of the labor market:

- Multinational affiliates are more productive than domestic firms
- Governments often provide incentives to attract them
- ▶ How do they impact a host country through the labor market?

#### Our view of the labor market:

- ▶ Due to search frictions, firms pay less than marginal product
- But workers are mobile: outside options along job ladder
- Can climb job ladder both inside and outside current firm

- Multinational affiliates are more productive than domestic firms
- Governments often provide incentives to attract them
- ► How do they impact a host country through the labor market?

#### Our view of the labor market:

- ▶ Due to search frictions, firms pay less than marginal product
- But workers are mobile: outside options along job ladder
- Can climb job ladder both inside and outside current firm

- 1. Direct effect on workers employed at multinationals
- 2. Indirect effect on outside options of workers at local firms
  - Low productivity firms: workers more likely to leave
  - ► High productivity firms: better outside options bid up wages

- Multinational affiliates are more productive than domestic firms
- Governments often provide incentives to attract them
- ▶ How do they impact a host country through the labor market?

#### Our view of the labor market:

- ▶ Due to search frictions, firms pay less than marginal product
- But workers are mobile: outside options along job ladder
- Can climb job ladder both inside and outside current firm

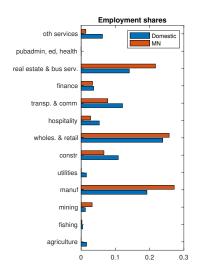
- 1. Direct effect on workers employed at multinationals
- 2. Indirect effect on outside options of workers at local firms
  - Low productivity firms: workers more likely to leave
  - ► High productivity firms: better outside options bid up wages
- Overall workers gain, local firms lose from multinationals
- ▶ Impact heterogeneous across workers and local firms

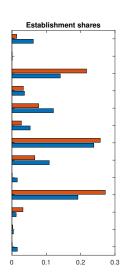
#### What we do & what we find

- 1. Matched employer-employee data for Norway
  - Confirm existence of a job ladder
  - ▶ (New) Multinationals high up on this job ladder
- 2. GE job ladder model of labor market with multinationals
  - Helpman-Melitz-Yeaple (2004) meets
     Cahuc-Postel-Vinay-Robin (2006) + DMP
- 3. Calibration: match firm size dist (MN and non-MN), wage dist, labor share, unemployment, labor market transitions
- 4. Counterfactual: infinite entry cost for multinationals
  - Multinational presence on avg helps workers, hurts local firms
  - ► But heterogeneous effects across workers, local firms
  - Competition increases high up on job ladder, decreases lower down



### Data

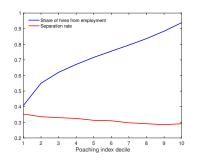

#### Data

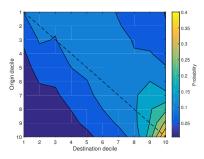

- Matched employer-employee data for Norway 1996-2007
- 1. For each individual, annual earnings (all sources) & establishment identifier for main employer each November
- 2. Ownership of establishments (MN vs domestic)
- ► Focus on private sector establishments & linked individuals

Summary statistics

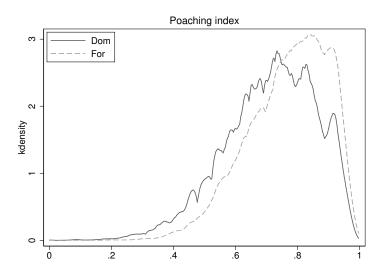
|                        | All        | Domestic  | MN        | MN share |
|------------------------|------------|-----------|-----------|----------|
| Worker-years           | 12,001,918 | 9,815,230 | 2,186,688 | 0.18     |
| Establishment-years    | 1,166,928  | 1,091,231 | 75,687    | 0.06     |
| Avg establishment size | 10.29      | 8.99      | 28.89     |          |

#### Industries: Domestic vs MN







### Job-to-job transitions are not random: job ladder

- ▶ Use November cross-sections to code transitions: EE, NE, EN
- ► Rank establishments by sample share of hires from employment: poaching index
  - ▶ Revealed preference, consistent with model





### Multinationals are high up on the job ladder





### Model

#### Model overview

- Discrete time
- ► Homogeneous workers, firms with hetereogeneous productivity
- Convex vacancy cost pins down firm size
- On-the-job and off-the-job search, random matching
- Wages determined by bargaining
- ► Look for stationary equilibrium

How do multinational affiliates differ from domestic firms?

- 1. Different entry cost, draw from different productivity dist
- 2. Entry cost paid by foreigners, profit rebated to foreigners

### Model assumptions 1/4: Workers

- ► Continuum of infinitely-lived workers on [0,1]
- Linear utility, discount future at rate  $\beta$
- Flow utility in unemployment is b
- ► Flow income for employed is endogenous wage *w*
- lacktriangle Match with employer breaks with probability  $oldsymbol{\delta}$  each period
  - Pass through one period of unemployment before searching
- Unemployed search for jobs with probability 1
- ▶ Employed search with probability  $s \le 1$

### Model assumptions 2/4: Firms

- ▶ Firm is a draw of productivity p from cdf  $\tilde{\Gamma}^i(p)$ ,  $i \in \{D, F\}$
- Output per worker employed by firm of type p is p
- ▶ Firms discount future at rate  $\beta$ , die at rate  $\delta_f$
- lacktriangle Surviving firms lose workers exogenously at rate  $\delta_m$

### Model assumptions 2/4: Firms

- ▶ Firm is a draw of productivity p from cdf  $\tilde{\Gamma}^i(p)$ ,  $i \in \{D, F\}$
- Output per worker employed by firm of type p is p
- Firms discount future at rate  $\beta$ , die at rate  $\delta_f$
- lacktriangle Surviving firms lose workers exogenously at rate  $\delta_m$
- ▶ Each firm pays c(v) to post  $v \in \mathbb{R}$  vacancies with

$$c(0) = 0, c'(v) > 0, c''(v) > 0$$

▶ Choose: optimal v(p) given wage setting protocol

### Model assumptions 2/4: Firms

- ▶ Firm is a draw of productivity p from cdf  $\tilde{\Gamma}^i(p)$ ,  $i \in \{D, F\}$
- Output per worker employed by firm of type p is p
- **Firms** discount future at rate  $\beta$ , die at rate  $\delta_f$
- lacktriangle Surviving firms lose workers exogenously at rate  $\delta_m$
- ▶ Each firm pays c(v) to post  $v \in \mathbb{R}$  vacancies with

$$c(0) = 0, c'(v) > 0, c''(v) > 0$$

- ▶ Choose: optimal v(p) given wage setting protocol
- Free entry condition:

$$C^{i}\left(\tilde{m}^{i}\right) = \int_{b}^{\underline{p}} 0d\tilde{\Gamma}^{i}(p) + \int_{\underline{p}}^{\bar{p}} \frac{B(p)}{1 - (1 - \delta_{f})\beta} d\tilde{\Gamma}^{i}(p)$$

- $ightharpoonup C^i(\tilde{m}^i)$  entry cost, convex in mass of entrants  $\tilde{m}^i$
- ▶ B(p) value to entrant of draw p
- ▶ p > 0: endogenous cutoff below which firm attracts no workers
- ▶  $\rightarrow$  Prod dist of active firms:  $\Gamma(p)$ , mass of firms M

### Model assumptions 3/4: Matching

▶ Total measure of vacancies is V:

$$V = M \int_{p}^{\bar{p}} v(p) \, d\Gamma(p)$$

► Total measure of searching workers is *S*:

$$S = u + s(1 - \delta)(1 - u)$$

- ▶ *u*: unemployment rate & number of unemployed
- ▶ CRS matching function  $\mu(S, V)$ 
  - ightharpoonup Probability unemployed worker meets vacancy:  $\lambda$
  - Prob vacancy meets worker:  $\chi$

$$\lambda = \frac{\mu(S, V)}{S}, \ \chi = \frac{\mu(S, V)}{V}$$

### Model assumptions 4/4: Bargaining & wages

- ► Follow Cahuc-Postel-Vinay-Robin (2006)
- ▶ When worker and firm match, they split match value
  - i.e. appropriately discounted flow of p
- Morker gets value of outside option + share  $\phi$  of match surplus (i.e. value of match less value of outside option)
- ► Implemented by constant wage until outside option increases
- ▶ Outside option depends on origin / best on-the-job meeting
- ▶ If outside option is better than current match, worker moves



### Model results 1/2: Wages

▶ Wage for worker at firm p with outside option  $q \le p$  is

$$w(\mathbf{q}, p) = \phi p + (1 - \phi) \mathbf{q} - \underbrace{\int_{\mathbf{q}}^{p} \frac{(1 - \phi)^{2} \beta (1 - \delta) \lambda s (1 - F(x))}{1 - \beta (1 - \delta) (1 - \phi \lambda s (1 - F(x)))} dx}_{\text{discount due to value of moving up ladder in firm } p}$$

 $\triangleright$  F(x): cdf of job offer distribution (endogenous)

$$dF(x) = \frac{v(x) d\Gamma(x)}{\int_{p}^{\bar{p}} v(y) d\Gamma(y)}$$

- Note: w(q, p) need not be monotonic in p
- ▶ Multinational presence affects joint distribution of  $\{p,q\}$
- ▶ Multinational presence affects F(x),  $\lambda$ , and therefore wages conditional on  $\{p, q\}$

### Aside: Ranking firms

- Average wage at the firm level need not be monotonic in p
  - Due to value of option to move up
- ▶ But share of hires from employment *is* increasing in *p*:

$$poach(p) = \frac{(1-u)(1-\delta)s\int_{\underline{p}}^{p} dL(x)}{u+(1-u)(1-\delta)s\int_{\underline{p}}^{p} dL(x)}$$

► Intuition: All firms hire all the unemployed workers they meet, but higher *p* firms hire more employed workers

### Model results 2/2: Vacancy posting

▶ Value to firm with productivity *p* of posting *v* vacancies:

$$B(p, \mathbf{v}) = \mathbf{v} \chi \begin{bmatrix} \frac{\underline{u}}{S} J(\underline{p}, \mathbf{p}) + \\ \frac{(1-u)(1-\delta)s}{S} \int_{\underline{p}}^{\mathbf{p}} J(x, \mathbf{p}) dL(x) \end{bmatrix} - c(\mathbf{v})$$

#### where

- ▶ J(x,p): value to firm p of worker w/ outside option  $x \le p$
- dL(x): pdf of dist of workers by their firm's productivity
- foc implicitly defines v(p), optimal vacancy posting
- ▶ Note: current employment does not enter B(p) = B(p, v(p))
- Multinational presence affects incentives to post vacancies through impact on J(x, p), and vacancy yield
- ▶ Multinational presence therefore affects size conditional on *p*

# Model extension: Worker heterogeneity and sorting

- ▶ H observable labor types,  $h \in \{1, ..., H\}$
- Firms can post vacancies in each skill market
- Random matching within each skill market
- ► Marginal product of skill type *h* at firm of productivity *p* is

$$y = \eta_h p^{v_h}$$

with

$$1 = \eta_1 \leq \ldots \leq \eta_H$$

and

$$1 = v_1 \leq \ldots \leq v_H$$

▶ If  $v_h > 1$  for some  $h \to$ sorting

### Calibration

#### Calibration

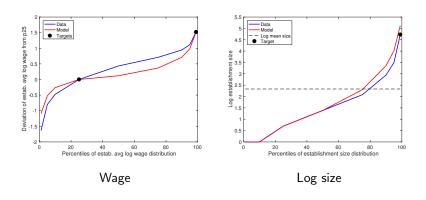
Functional forms:

$$\mu\left(S,V
ight) = AS^{ heta}V^{1- heta}$$
  $c\left(v
ight) = rac{v^{1+rac{1}{lpha}}}{1+rac{1}{lpha}}$   $ilde{\Gamma}^{D} \sim Pareto\left(b,\sigma^{D}
ight) ext{ and } ilde{\Gamma}^{F} \sim LN\left(\mu^{F},\sigma^{F}
ight)$ 

 $\bar{p}$ : bounded above at 99.5th pctile of more dispersed dist.

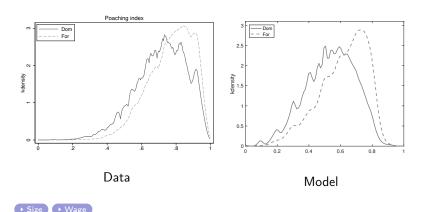
- ▶ Production function: Cobb-Douglas in capital, labor with capital share  $\kappa$ , all firms face same rental price of capital
- ▶ Solve for mass of active firms M, share  $\omega$  of foreign firms in potential entrants
- ▶  $\rightarrow$  recover  $C^D$ ,  $C^F$

### Parameters and targets


▶ Preset:  $\beta = 0.95^{1/4}$ ,  $\kappa = 0.25$ , b = 1 (normalize),  $\theta = 0.5$  (literature),  $\delta = 0.038$  (Eurostat),  $\delta_f = 0.01$  (Balsvik & Haller)

| Parameters | and | <b>Targets</b> |
|------------|-----|----------------|
|------------|-----|----------------|

| Target description                      | Data  | Model |            | Value  |
|-----------------------------------------|-------|-------|------------|--------|
| Outside data                            |       |       |            |        |
| EE quarterly transition rate (Eurostat) | 0.03  | 0.03  | S          | 0.56   |
| Labor share (Statistics Norway)         | 0.60  | 0.60  | $\phi$     | 0.58   |
| Nonemp rate 25-54 (Statistics Norway)   | 0.155 | 0.157 | Α          | 0.32   |
| Our data                                |       |       |            |        |
| p99 log estab. employment               | 4.73  | 4.90  | α          | 0.52   |
| Average establishment size              | 10.29 | 10.26 | M          | 0.08   |
| Share active estabs that are domestic   | 0.94  | 0.94  | ω          | 0.0008 |
| p99-p25 estab. avg log wage             | 1.52  | 1.52  | $\sigma_D$ | 2.57   |
| Average establishment size, MN          | 29.89 | 29.01 | $\mu_F$    | 0.48   |
| p99 log estab. employment, MN           | 5.78  | 5.56  | $\sigma_F$ | 1.64   |


### Nontargeted moment: firm size & wage distribution

► Simulate quarterly model for 10 years with 1.2 million workers, calculate poaching index, wages as in data



### Nontargeted moment: poaching index distribution

► Simulate quarterly model for 10 years with 1.2 million workers, calculate poaching index as in data



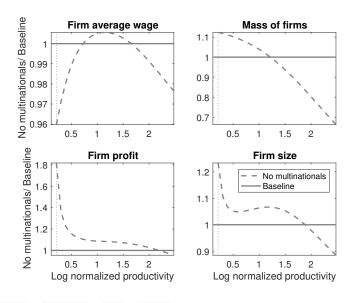
### Counterfactual

#### Counterfactual: No multinationals

- ▶ Let  $C^F \to \infty$ , hold  $C^D$  fixed (elastic domestic entry) ▶ Prod
- Solve for counterfactual measure of firms, active firm productivity dist s.t. domestic free entry condition holds

Impact of multinationals on output, components

|                                                | Level |       | Sh. of output |            |
|------------------------------------------------|-------|-------|---------------|------------|
|                                                | MN    | No MN | MN            | No MN      |
| Output                                         | 1     | 0.89  |               |            |
| Payments to labor                              | 1     | 0.89  | 0.599         | 0.602      |
| Domestic firm profit                           | 1     | 1.20  | 0.07          | 0.09       |
| Foreign firm profit                            | 1     | 0.00  | 0.03          | 0.00       |
| Payments to capital                            | 1     | 0.89  | 0.25*         | $0.25^{*}$ |
| Hiring cost                                    | 1     | 0.88  | 0.06          | 0.06       |
| Labor + domestic profit                        | 1     | 0.93  | 0.67          | 0.69       |
| ${\sf Labor + dom\ profit - dom\ entry\ cost}$ | 1     | 0.91  | 0.63          | 0.65       |


<sup>\*</sup> By assumption

## Impact of multinationals on workers & local firms

|                        | Baseline | No MN |
|------------------------|----------|-------|
|                        | Workers  |       |
| Avg worker-level wage  | 1        | 0.88  |
| Nonemployment rate     | 0.157    | 0.144 |
| Wage Gini              | 0.32     | 0.32  |
|                        | Firms    |       |
| Measure of firms       | 1        | 1.43  |
| Measure of local firms | 1        | 1.52  |
| Avg firm size          | 10.26    | 7.74  |
| Avg local firm size    | 9.00     | 7.74  |

- ► Restricting multinational entry hurts workers, helps local firms
- ► But heterogeneous effects (next slide)

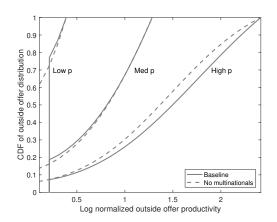
### Heterogeneous effects across firm productivity distribution












### Intuition: shift in outside option distribution

▶ Wage for worker at firm p with outside option  $q \le p$  is

$$w(\mathbf{q}, \mathbf{p}) = \phi \mathbf{p} + (1 - \phi) \mathbf{q} - \int_{\mathbf{q}}^{\mathbf{p}} \frac{(1 - \phi)^2 \beta (1 - \delta) \lambda s (1 - F(x))}{1 - \beta (1 - \delta) (1 - \phi \lambda s (1 - F(x)))} dx$$

discount due to value of moving up ladder in firm p



### Robustness: Labor heterogeneity & sorting

- ► Calibrate model with H = 3 skill groups to match skill premia & skill shares of employment along the job ladder Sorting
- ► Counterfactual: infinite entry cost for multinationals
- ► Impact on aggregates bigger than baseline ► Aggregates

#### Additional insights:

- Sorting → skill premium falls in counterfactual
- ► Heterogeneous within-skill-group effects as in baseline
- Within-skill-group effects biggest for high skill Skillwage

#### Relation to reduced form evidence

#### Alfaro-Ureña, Manelici & Vasquez (2021)

- Positive impact of (instrumented) multinational presence in local labor market on wages of employees of domestic firms
- Insufficient college workers to distinguish effects for high and low skill groups

#### Setzler & Tintelnot (2021)

- Positive impact of (instrumented) multinational presence in local labor market on wages of employees of domestic firms
- ► Increase bigger for high-paid workers (don't see education)
- Employment at domestic firms increases

#### We find:

► Heterogeneous effects across workers & local firms

#### Conclusion

- ► Labor market is characterized by a job ladder, with multinationals at the top
- Multinational presence increases productivity and labor market competition: on average helps workers, hurts local firms
- ▶ But impact is heterogeneous:
  - Low & medium productivity local firms shrink as workers climb the job ladder outside the firm
  - High productivity local firms pay higher wages due to more outside options high up on the job ladder

#### Related literature

Applications of general equilibrium job ladder models with firms

▶ Bagger & Lentz (2019), Engbom & Moser (2021), Gouin-Bonenfant (2022)

Impact of multinationals through the labor market

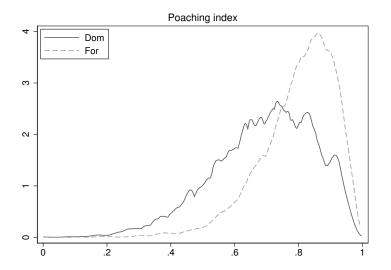
▶ Alfaro-Ureña et al (2021), Setzler & Tintelnot (2021)

Empirical literature on job ladders


 Haltiwanger, Hyatt, Kahn & McEntarfer (2018), Moscarini & Postel-Vinay (2018)

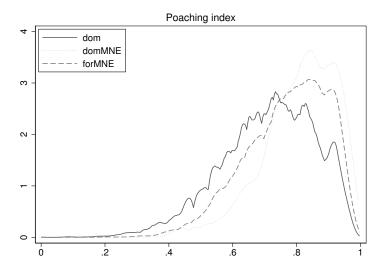
Search and matching models of distributional impact of trade

► Helpman, Itskhoki, Redding (2010), Cosar, Guner and Tybout (2016), Helpman, Itskhoki, Muendler & Redding (2017), Fajgelbaum (2020)




### Occupations: Domestic vs MN






# Poaching index distribution by ownership: firms





# Poaching index distribution including home MNEs





# Model assumptions: Bargaining & wages

▶ Worker at firm p with outside option q gets w(q, p) s.t.

$$W(q,p) = \underbrace{W(q,q)}_{\text{outside option}} + \phi \underbrace{(W(p,p) - W(q,q))}_{\text{match surplus}}$$

where

$$W(q,p) = w(q,p) + \beta$$

$$(1 - \delta)\lambda s$$

$$(1 - \delta)$$

#### Model results: Profits

Per period profit of firm of type p with age a is

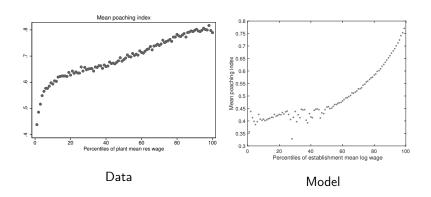
$$\pi(p) = \left(p - \underbrace{\int_{\underline{p}}^{p} w(x, p) dG(x|p)}_{\text{average wage at firm } p}\right) e(p, a) - c(v(p))$$

- ▶ dG(x|p): pdf of outside options for workers at firm of type p
- ightharpoonup e(p,a): employment at firm of type p with age a
- ▶ Multinational presence affects w(x,p), G(x|p),  $\underline{p}$  and therefore average wage conditional on p
- ▶ Multinational presence also affects e(p, a), v(p)

# Model results: Firm age and size

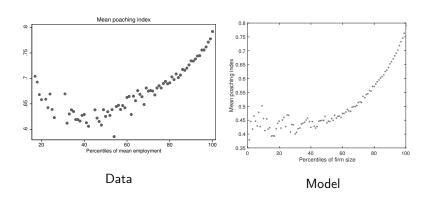
Firms of type *p* which survive to age *a* have employment:

$$e(p,a) = \frac{h(p)}{1-x(p)} (1-x(p)^a)$$


with

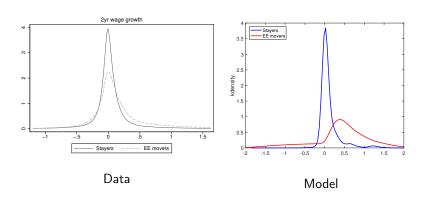
$$h(p) = v(p)\chi\left(\frac{u + (1 - u)(1 - \delta)s\int_{\underline{p}}^{p} dL(x)}{S}\right)$$
$$\chi(p) = \frac{(1 - \delta)}{(1 - \delta_f)}(1 - \lambda s(1 - F(p)))$$

• Fraction of firms of age a is  $(1-\delta_f)^{a-1}\delta_f$ 

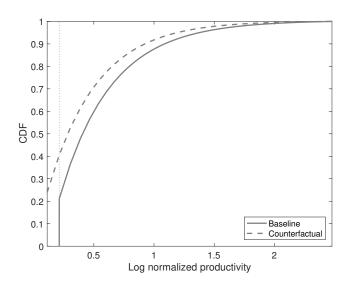

# Nontargeted moment: joint dist of poaching index & wages

► Simulate quarterly model for 10 years with 1.2 million workers, calculate poaching index, wages as in data • Back



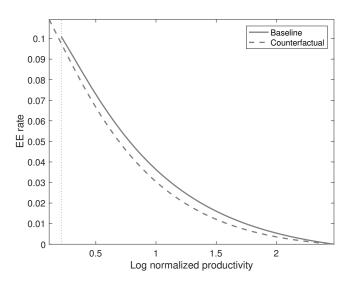

# Nontargeted moment: joint dist of poaching index & size

► Simulate quarterly model for 10 years with 1.2 million workers, calculate poaching index, size as in data ►Back



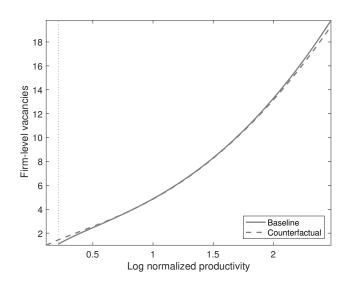

## Nontargeted moment: 2-year log wage growth

► Simulate quarterly model for 10 years, with 1 million workers calculate transitions, wages as in data



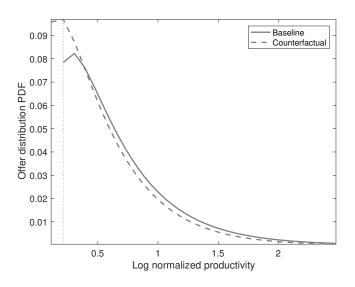

# Shift in active firm productivity distribution





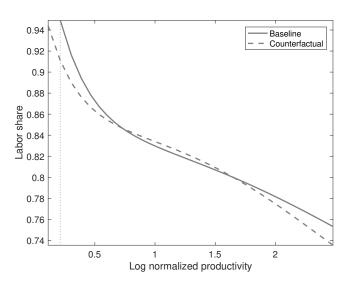

# EE rate






### Vacancies

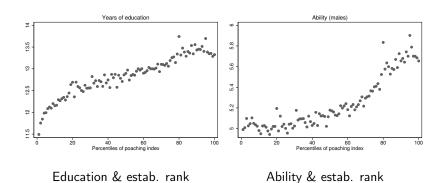





#### **Vacancies**






#### Labor share





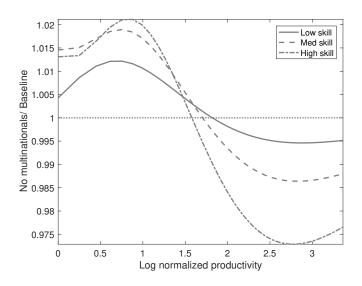
# Worker heterogeneity and sorting

▶ back



16 / 18

# Counterfactual: Heterogeneous labor case


Impact of multinationals on output, components

| •                                              | •     | •     | •             |            |
|------------------------------------------------|-------|-------|---------------|------------|
|                                                | Level |       | Sh. of output |            |
|                                                | MN    | No MN | MN            | No MN      |
| Output                                         | 1     | 0.74  |               |            |
| Payments to labor                              | 1     | 0.81  | 0.605         | 0.659      |
| Domestic firm profit                           | 1     | 1.05  | 0.06          | 0.08       |
| Foreign firm profit                            | 1     | 0.00  | 0.08          | 0.00       |
| Payments to capital                            | 1     | 0.74  | 0.25*         | $0.25^{*}$ |
| Hiring cost                                    | 1     | 0.67  | 0.00          | 0.00       |
| Labor + domestic profit                        | 1     | 0.83  | 0.66          | 0.74       |
| ${\sf Labor + dom\ profit - dom\ entry\ cost}$ | 1     | 0.81  | 0.63          | 0.69       |
|                                                |       |       |               |            |

<sup>\*</sup> By assumption



# Heterogeneous wage effects by skill type



